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ABSTRACT 
The  evolution of multilocus systems under weak selection is investigated. Generations  are discrete 

and  nonoverlapping;  the monoecious  population  mates at  random.  The  number of multiallelic loci, 
the linkage  map, dominance,  and epistasis are  arbitrary.  The genotypic fitnesses may depend  on  the 
gametic  frequencies and  time. The results hold for s << c,,,,,, where s and cmin denote  the selection 
intensity and  the smallest two-locus recombination frequency, respectively. After an  evolutionarily 
short time of t l  - (In s)/ln(l - c,,,,,,) generations, all the multilocus linkage disequilibria are of the 
order of s [i .e. ,  O(s) as s + 01, and  then  the population evolves approximately  as if it were in linkage 
equilibrium,  the  error in the gametic  frequencies  being O(s) .  Suppose the explicit time dependence 
(if any) of the genotypic fitnesses is O(s'). Then  after a  time t2  - 2 t l ,  the linkage disequilibria are 
nearly constant,  their  rate of change  being O(s2). Furthermore, with an  error of O(s2), each  linkage 
disequilibrium is proportional  to  the  corresponding epistatic  deviation for  the  interaction of additive 
effects on fitness. If the genotypic fitnesses change  no faster than  at  the  rate O(ss), then  the single- 
generation  change in the mean fitness is A m  = w"V, + O(s3),  where V, designates the genic (or 
additive genetic)  variance in fitness. The  mean of a character with genotypic values whose single- 
generation  change  does  not exceed O(s2) evolves at  the  rate M-= *ICg + O(s2), where C, represents 
the genic  covariance of the  character  and fitness (i .e. ,  the covariance of the average  effect  on the 
character  and  the  average excess for fitness of every allele that affects the  character).  Thus,  after a 
short time t P ,  the absolute error in the  fundamental  and secondary theorems of natural selection is 
small, though  the relative error may be large. 

T WO natural  approaches  [both reviewed in EWENS 
(1979)  Ch.  6  and 7, HASTINCS (1989),  and 

NAGYLAKI  (1  992a)  Ch. 8 and 101 have been fruitfully 
used to study selection at multiple loci. In most of this 
work,  a  panmictic, monoecious population with  dis- 
crete, nonoverlapping  generations and viability  selec- 
tion with constant  genotypic viabilities are posited. 

In the first approach,  the  great complexity and 
difficulty of the problem are  reduced by imposing 
restrictions  on the fitness pattern. Natural and in- 
tensely investigated restrictions have been that fit- 
nesses be  additive or multiplicative between loci or 
that they satisfy certain symmetries. Since these sim- 
plified problems are still quite complicated and diffi- 
cult, most studies have focused on  finding  the equilib- 
ria,  testing  their local stability, and hence  drawing 
conclusions about  the local behavior of the linkage 
disequilibria and  the mean fitness. Even if there  are 
only two loci, stable linkage disequilibrium can be 
generated,  and  the mean fitness can decrease (MORAN 
1964; KIMURA 1965; NAGYLAKI 1977a). 

For additive fitnesses, there exist general, global 
results. EWENS  (1  969a,b) has extended  to multiple loci 
the classic single-locus result  that the mean fitness is 
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nondecreasing (MULHOLLAND and SMITH 1959; 
SCHEUER and MANDEL 1959;  ATKINSON, WATTERSON 
and MORAN 1960; KINGMAN 196 1). The gametic  fre- 
quencies always converge to a  stationary  point in 
linkage equilibrium (KARLIN and  FELDMAN  1970; 
KARLIN 1978; KUN and LYUBICH  1979). The fairly 
simple formula for the  change in mean fitness can be 
written in the form 

V 
A m  = $ (1 + E ) ,  

where V, denotes  the genic (or additive  genetic) vari- 
ance in fitness, and  the relative error E is zero in the 
absence of dominance  (NAGYLAKI  1989). There  are 
several upper  bounds on E ,  of which the most illumi- 
nating  (though  not  the  sharpest) is IEl C Vzs, where s 
designates the  greatest multilocus selection coefficient 
(NAGYLAKI 199  1). Thus, FISHER'S (1 930)  fundamental 
theorem of natural selection holds approximately  for 
weak selection: 

In the second approach,  the fitness pattern is arbi- 
trary.  EWENS (1979, Ch. 8 and  9)  and HASTINGS 
(1 989) review numerical studies. T o  derive analytical 
results, it is customary and biologically reasonable to 
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posit that selection is much weaker than  recombina- 
tion. Even then we must be satisfied with conclusions 
that are usually  less detailed  and sometimes more 
qualitative than those for  particular selection schemes. 
Much  of the  recent  research has been stimulated by 
and  oriented  toward  quantitative genetics [BARTON 
and TURELLI ( 1  99 1) and references  therein]. 

For two loci, we have considerable  general  under- 
standing of evolution under weak selection (NAGYLAKI 
1976,  1977a,b, Sec. 8.2;  1992a, Sec. 8.2). The results 
hold for s << c, where c signifies the  recombination 
frequency.  After an evolutionarily short  time o f t ,  - 
(In s)/ln(l - c)  generations, the linkage disequilibria 
are of the  order of s [i.e., O(s) as s + 01, and then  the 
population evolves approximately as if it were in link- 
age  equilibrium, the  error in the gametic frequencies 
being O(s). Suppose the explicit time dependence (if 
any) of the genotypic fitnesses is O(s'). Then after  a 
time t2 - 2t1, the linkage disequilibria are nearly 
constant,  their rate of change being O(s2). If the 
genotypic fitnesses change  no  faster  than  at  the  rate 
0(s3), then 

A m  = m-'Vg + O(s3), t 3 t2, (3) 

as s -+ 0, where t (= 0, 1 ,  2, . . .) represents  time in 
generations. 

Equation 3 means that,  after  a  short time t2, the 
absolute error in the  fundamental  theorem of natural 
selection is small. Although this suggests that  (2) 
should hold generically, exceptions would be pre- 
cluded only if the relative error were small, as de- 
scribed above  for  additive fitnesses. From (3) we see 
that  the mean fitness can decrease only if the genic 
variance is much smaller than s2, which is the case if 
and only if the  absolute value of the gene-frequency 
change  per  generation is much smaller than s. The 
latter can result from symmetry conditions or prox- 
imity to an equilibrium (MORAN 1964; KIMURA 1965; 
NACYLAKI 1977a).  Stable cycling i n  two-locus models 
(AKIN 1979,  1982,  1983; HASTINGS 1981) provides 
the most striking  example of the occasional failure of 
the  fundamental  theorem of natural selection. 

AKIN (1 979)  and  SHAHSHAHANI  (1  979) have devel- 
oped an elegant mathematical formalism for  a multi- 
locus continuous-time model in  which gametic Hardy- 
Weinberg  proportions  are  assumed,  and PASSEKOV 
(1 984) briefly discusses the weak-selection dynamics 
of this model. Although we expect this model to have 
usually the same qualitative behavior as the  standard 
discrete model investigated in this paper, it is not easy 
to  derive this continuous model rigorously in such a 
manner  that it covers the  parameter space of biolog- 
ical interest. Even for  a single locus, the  continuous 
Hardy-Weinberg model applies only to weak selection 
(NAGYLAKI and  CROW  1974; NAGYLAKI 1976,  1977b, 
Sec. 4.10;  1992a, Sec. 4.10  and  Problem  4.22). The 
continuous multilocus model can be deduced as the 

limit  of the  discrete one if selection is weak and linkage 
is tight.  However, if not all the recombination  fre- 
quencies are small, then  one must first prove one of 
the major results of this paper, viz., that all the mul- 
tilocus linkage disequilibria rapidly become O(s) in the 
discrete  model.  For two loci, this argument is outlined 
in Problem 8.15 in NAGYLAKI (1  992a). 

In  principle,  a  continuous model that  properly in- 
corporates deviations from  Hardy-Weinberg  propor- 
tions is exact for  a continuously reproducing popula- 
tion if either it has no  age  dependence or it has 
reached  a  stable  age  distribution. Such a model has 
been formulated  and analyzed for two loci (NAGYLAKI 
and CROW  1974;  NACYLAKI  1976,  1977b, Sec. 8.4; 
1992a, Sec. 8.4); MOODY (1978) has formulated  the 
general multilocus model. 

The ideas and methods used in the weak-selection 
analysis  of the two-locus  system have been adapted 
and  extended  to several other biological situations: 
single autosomal and X-linked  loci  in a dioecious pop- 
ulation (NAGYLAKI 1979a,  1992a, Sec. 7.4), density- 
dependent selection (NAGYLAKI 1979b,  1992a, Sec. 
4.1 l ) ,  and selection on  both viability and fertility 
(NAGYLAKI 1987).  This work is briefly reviewed 
in NAGYLAKI (1991). 

In this paper, we shall generalize  the analysis  of the 
two-locus  system described  above to  an  arbitrary  num- 
ber of loci, and, motivated by quantitative genetics, 
we shall extend  (3)  to  an  arbitrary  character,  thereby 
establishing the  secondary  theorem of natural selec- 
tion. Previous investigations of this theorem were 
based on  more restrictive assumptions: linear  regres- 
sion (ROBERTSON 1966,  1968; NACYLAKI 1992b),  nor- 
mality (LANDE  1976), two loci  in continuous time 
(CROW  and NAGYLAKI 1976; NAGYLAKI 1989),  no 
epistasis (NACYLAKI 1989, 1991), purely additive ge- 
netics (TURELLI and BARTON 1990),  or linkage equi- 
librium (NAGYLAKI 1992b). 

We adhere  to  the canonical interpretation of the 
fundamental  theorem of natural selection: AV in (3) 
is the actual (or total)  change in the mean fitness. 
PRICE (1 972)  and EWENS (1 989) have argued cogently 
that  FISHER  (1  930) really treated only a  certain  part 
of Am, for which (2) is exact under very  mild assump- 
tions. This  interpretation is described and discussed 
in NAGYLAKI (1991).  It might  be most accurate  to 
refer to their result as the Fisher-Price-Ewens theorem 
on natural selection and  to  (3) as the asymptotic f unda-  
mental theorem of natural selection. 

In  the  next  section, we shall formulate our problem 
and derive some preliminary results. In  the following 
section, we shall prove  that the multilocus linkage 
disequilibria rapidly become small. Then we shall 
demonstrate  that  the  population evolves approxi- 
mately as if it were in linkage equilibrium. In the 
succeeding section, we shall  show that  the linkage 
disequilibria rapidly become nearly constant.  Next, 
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we shall decompose the gametic covariance of an 
arbitrary  character  and fitness. In the following sec- 
tion, we shall relate each linkage disequilibrium to  the 
corresponding epistatic deviation for  the  interaction 
of additive effects on fitness. Then we shall prove the 
asymptotic fundamental  and secondary  theorems of 
natural selection. In the final section, we shall sum- 
marize and discuss our results. 

In each section, we shall state and  comment on our 
major  results at  the beginning and  prove  them in the 
following subsections. 

FORMULATION 

Here, we formulate our problem and  derive some 
preliminary results. 

In Table  1, we list and briefly define  the symbols 
used  in this paper. We refer  to  more precise defini- 
tions in the  text  and displays by equation  number: 
thus, (7), (7)+, and (7)- mean that  the  definition 
appears in, below, and above Equation 7, respectively. 

Generations are discrete and nonoverlapping; the 
monoecious population mates at random. The num- 
ber of multiallelic loci, the linkage map,  dominance, 
and epistasis are arbitrary. If there  are fertility differ- 
ences, the fertility of each mating can be expressed as 
the  product of factors  corresponding  to  the  genotypes 
involved (BODMER 1965; NAGYLAKI 1977b, Sec. 8.1; 
1992a, Sec. 8.1). The genotypic fitnesses may depend 
on the gametic frequencies and time. 

Suppose there  are n loci and k f k  alleles Ai:’ (ik = 1, 
2, . . . , M h )  at locus k. We put i = ( i l ,  ip, . . . , in) and 
denote  the frequency of the  gamete AIi’Ai:’ . . . Ai:’ 
(which,  for  brevity, we shall call gamete i) immediately 
after gametogenesis by pi; collectively, these  form the 
vector p .  Then  the frequency of A::’ in gametes is 

i  

where the sum is over all components of the vector i 
except ik. 

Let Wq(p, t )  designate the fitness of genotype ij. We 
assume that Wq(p, t )  is bounded away from 0 and to 
and is continuously differentiable with respect to p 
for every i and j .  Since this paper  concerns weak 
selection, exclusion of lethality and sterility is not an 
additional  restriction. We define  the mean fitnesses 
of the  gamete i, the allele A::’, and  the population by 

i 

We shall usually suppress the  arguments p and t. For 
both fitness and  the  arbitrary  character 2, we shall 
consistently use lowercase letters to represent  the  de- 

viations of quantities  from  their means: 
w. .  = w.. - w - 
‘I ‘J ( 6 4  

w. = wi - w = w . . p .  
- 

‘I I’ (6b) 
j 

pi,  ( 4  w,, ( N  = pih (k’ (Wl’ - IT’) = E(” ~ i p i .  ( 6 ~ )  

Thus, w, and w!:’ signify the avera e excesses for fitness 
of the  gamete i and  the allele Ai ,  ( k y  , respectively. 

T o  specify the effect of recombination, we discretize 
the  formulation of FLEMING (1979). Let N = { 1, 2, 
. . . , n)  denote  the set of  loci. Throughout this paper, 
Z designates a proper subset of N including one ( i . e . ,  
1 E Z C N )  and J = N - I is its complement, whereas 
R designates a  nonempty subset of N ( i . e . ,  R G N ,  
unless R represents  a proper subset, in  which  case R 
C N )  and Q = N - R. We write iR for  the  vector with 
components ik for every k in R. Let cI signify the 
probability of reassociation of the genes at  the loci  in 
I ,  inherited  from  one  parent, with the genes at  the 
loci  in J, inherited  from  the  other. 

Prominent roles will be played by the total recom- 
bination frequency. 

i  

Ctot = c CI (7) 
I 

and  the  recombination  frequency ch1 between loci k 
and 1 such that k < 1. To calculate the two-locus 
recombination  frequencies ck[  in terms of the linkage 
map cI, define  the set of sets 

N I I = ( I :  kEZandlEJ,   or  kEJandlEZ).  (8) 

Then we have 

Ckl = CIS (9) 
I W h I  

The most important  recombination  parameter is the 
smallest two-locus frequency 

c,in = min &I, (10) 

in  which the minimum is over every k, 1 E N such that 
k < 1. 

The gametic  frequencies satisfy the recursion  rela- 
tions 

A$, = W”P~W, - D,,  (1 1 4  

where 

Di = W“ 1 C S(wqpipj - wilj,,j,i,pilj,pj,i,) ( 1  1 b) 
j I  

denotes  a  measure of linkage disequilibrium in gamete 
i, and pil,, designates the frequency of the  gamete 
formed  from  the  genes i t ,  inherited  from  one  parent, 
and  the genes jJ ,  inherited  from  the  other. 

T o  derive  the  recursion  relation  for  the  gene  fre- 
quencies pj:, we must prove the identity 

p ’  Di = 0 (12) 
i 
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TABLE I 

Glossary of symbols 

Symbol Reference  Definition 

Allele i h  at locus k 
Constant 
Constant 
Constant 
Constant 
Constant 
Gametic covariance  of Z and W 
Genic covariance of Z and W 
Epistatic covariance  of Z and W 
Component  of epistatic  covariance  of Z and W due to the  interaction of all the loci in R 
Two-locus recombination  frequency 
Frequency of  reassociation  of the  genes  at  the loci in I ,  inherited  from  one  parent, with the  genes  at  the loci in J ,  

Total  frequency of recombination 
Recombination  frequency between loci k and 1 such that k < 1 
The smallest two-locus recombination  frequency 
Frequency of reassociation of the  genes  at  the loci in K ,  inherited  from  one  parent, with the  genes  at  the loci in 

Total  frequency of recombination  among  the loci in R 
n-locus linkage  disequilibrium: the  difference between the  recombined  and  unrecombined  adult genotypic fre- 

inherited  from  the  other 

R - K ,  inherited  from  the  other 

quencies,  weighted by the  recombination  frequencies  and  summed over recombination  events  and  one of the 
gametes 

Linkage disequilibrium among all the l o c i  in R: defined  for R as is D, for N 
Linkage disequilibrium among all the loci in R: defined  for R as is d, for N 
n-locus  linkage  disequilibrium: the  difference between the  frequency of gamete i and  the  product of the  corre- 

Scaled  linkage  disequilibrium among all the loci in R 
Scaled n-locus linkage  disequilibrium 
Relative error in the  fundamental  theorem of natural selection 
Expectation over the  gametic  frequencies fi, 
Total epistatic deviation in z, 
Epistatic deviation in z, due  to  interactions in all subsets of R 
Recombination function 
Selection function 
Selection function  for  the loci in R 
Epistatic function 
Recombination function 
Recombination  function  for  the loci  in R 
Allelic selection function 
Allelic selection function 
Proper subset  of loci { 1, 2, . . . , n 1 including 1 
Allelic index  at locus k 
Gametic index (i,, i ~ .  . . . , i,) 
Vector with components ir for every k in R 
N - I ,  the  complement of I 
Gametic  index 
Constant 
Subset  of R 
Locus index 
Constant 
Constant 
Subset  of N 
Locus index 
I L 1 ,  the  number of elements of L 
The  number of alleles at  locus k 
Constant 
Subset of N 
I M 1 ,  the  number of elements of M 
{ 1, 2, . . . , n 1, the  set  of loci 
Set  of  subsets of I of N such that each I contains  either k or 1 

sponding allelic frequencies 
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Table I-Continued 

Symbol Reference 

63 1 

Definition 

Set  of proper subsets M of N such that  each M contains K and N - M contains R - K 
The  number  of loci 
Order symbol 
Frequency  of  gamete i 
Vector of gametic  frequencies 
Frequency of the allele A!:’ 
Frequency of the  gamete  formed  from  the  genes i,, inherited  from  one  parent,  and  the genesj,, inherited  from 

Gametic  frequency  for loci  in R 
Allelic frequency at  a diallelic locus 
N - R ,  the  complement of R 
Product of the allelic frequencies at  the loci  in R 
Product of all the allelic frequencies 
Subset  of N 
Selection  intensity in generation t with gametic  frequencies p 
IR I, the  number  of  elements of R 
The  smallest element  of R 
Selection  intensity at  locus k in generation t with gametic  frequencies p 
Subset  of N 
Selection  intensity 
The  greatest single-locus selection intensity 
N - S, the  complement of S 
Time in generations 
Characteristic  time  for  reduction  of  the linkage  disequilibria to O(s) 
Characteristic  time  to  approximate constancy  of the linkage  disequilibria 
Characteristic  time  for  reduction  of  the linkage  disequilibria for loci  in R 
t l  

Characteristic time for  convergence  to  an equilibrium  point 
Total epistatic  deviation in w, 
Epistatic deviation in w, due  to  interactions in all subsets of R 
Gametic variance in Z 
Genic  variance in Z 
Epistatic variance in Z 
Total  genetic variance in Z 
Variance  due  to nonadditivity  of the  gametic effects on Z 
Epistatic  variance in Z due  to  the  interaction  of all the loci in R 
Epistatic  variance due  to all sets of r additive effects on Z 
Epistatic deviation in w, due  to  the  interaction of all the loci in R 
Fitness of genotype ij 
Fitness of gamete i 
Fitness of allele A!:’ 
Mean  fitness 
Fitness 

the  other 

W,] - w 
W, - w 
w!;’ - w 
Sum in (1  3b) 
Total  absolute deviation  of the allelic frequencies 
Epistatic deviation in z, due  to  the  interaction  of all the loci in R 
Factor in (1  43a) 
Upper  bound  on x ( t )  
Trait value 
Trait value  of genotype ij 
Trait value of  gamete i 
Trait value of allele A!;’ 
Mean trait value 
Z,] - z 
z, - z 
z!;) - z 

a!:’ (37) Constant 

a, (39)-, (5 1 b) a!‘’? 
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Table I-Continued 

Synlbol Reference Definition 

max, a, 
Constant 
p !” 
Constant 
1 - c,,,, the probability that  there is no  recombination 
1 - c!:?, the probability that  there is no  recombination  among  the loci  in R 
Operator  for  change in one  generation 
Product-moment linkage  disequilibrium among all the loci  in R 
Product-moment n-locus linkage  disequilibrium 
Upper  bound  on 1 d, I 
Total  additive effect  on z, 
Average  effect of A!:’ on 2 
Translated value of Gf’ 
Translated value of 1; 
Constant 
Constant 
Constant 
y ’  

maxi K ,  

I K 1, the  number of elements in K 
Constant 
T h e  complement of the smallest two-locus recombination  frequency in R 
1 - c,,,, the  complement  of  the smallest two-locus recombination  frequency 
Constant 
fl!W 

Constant 
Total  additive effect on w, 
Average effect  of A!? on W 
Frequency of the allele A!:’ on  the linkage-equilibrium surface 
Frequency of gamete i on  the linkage-equilibrium surface 
Vector of gametic  frequencies  on  the linkage-equilibrium surface 
Constant 
Constant 
Sum  over all components  of  the  vector i except ik 
Fitness parameter 
1 S 1, the  number of elements of S 
Constant 
Summation  index  for  time 
I T I ,  the  number of elements of T 
Recombination  function 
Indicator  function  for  the allele A!? 
Indicator  function  for  gamete iK in K 
Recombination  function 
Sum in (161b) 

Generation t + 1 
Supremum,  or least upper  bound 
Approximate equality 
Asymptotic  equality 
An element of 
A proper subset  of 
A  subset  of 

ILI (1  39)+ For a  set L ,  this signifies the  number of elements in L 

For  both  the  Roman  and  Greek  alphabets,  uppercase  letters  precede lowercase ones.  For  each  uppercase or lowercase letter, listing is in 
order of appearance of the precise definition in the  text.  The  references  are  to  the  equation closest to the precise  definition  of each symbol. 
Thus,  (7), (7)+, and (7)- would refer to Equation 7, the  text below Equation 7 ,  and  the  text  above Equation 7 ,  respectively. 
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for every k, ie., the single-locus “linkage disequilibria” 
are zero. From (1 1 b),  (sa),  and  (5b) we obtain 

D, = c,[ W!:)pj:) - X!:)(Z)],  ( 1  3a) 
2 I 

where 

x!:)(I) = c ( ~ )  c WigJ,j,i,pt,JJ,jli,. (1 3b) 
i j  

There  are two possibilities  in (1 3b): either k E I or 
k E J .  If k E I ,  then  (5a)  and  (5b) yield 

X!:’(]) = F k )  c CC W*,jJ,j,*JPtlJJpj,tJ 
9 JJ  I 1  9 

Wi, pil 7 
(A) ( 4 .  (14) 

a similar argument produces  the same result for k E 
J .  Therefore, (1 3a) establishes (12).  Summing  (1 la) 
and appealing to (4), (6c), and (1 2), we find 

WAp;:’ = p!:)wl:). (1 5) 

Although it is the linkage disequilibria Di that enter 
the basic recursion  relations (1 l),  a simpler set of 
linkage disequilibria that do not involve the fitnesses 
(and which seem not  to have been used for  more  than 
two loci) will be more convenient  for our analysis. As 
above, suppose R C N and Q = N - R. Then the 
gametic frequencies  for loci  in R read 

p!,“’ = C p , ;  (16) 
iP 

of course, pry = p , .  We introduce  the linkage disequi- 
libria 

dl,“) = p1(:) - ql:), ( 1 7 4  

in  which 

q 1.Q 
(R) = n pj;) .  (1 7b) 

kER 

In particular,  for R = N we have 
d . = p . - q  I I I ,  ( 1 8 4  

in  which 
n 

q; = n p!;’. (1 8b) 
k= I 

The analog of (1 2) follows immediately from (1 8) and 
(4): for every k, 

di = 0. (1 9) 

From (1 Ib)  and (1 8) we see that if there is no 
position effect and dl = 0 for every i, then Di = 0 for 
every i. 

We now turn to  the  definition of the selection 
intensity s. At least for weak selection, a simple, nat- 
ural definition is often manifest; for our purposes, 
definitions of the same order of magnitude are equiv- 
alent. T o  be specific, however, we choose the most 

i 

conservative definition. We take 

as the selection intensity in generation t with gametic 
frequencies p and define 

s = sup r ( p ,  t ) .  (20b) 
P.1 

Observe  that  (6a),  (5c), and  (20) give 

for every i andj ,  which is equivalent to 

Thus, 

wlJ(p? l) = o(s) (22) 

as s --., 0. Here  and below, unless indicated otherwise, 
all order symbols are uniform in p and t .  If the 
fitnesses are  independent of time,  the  supremum in 
(20b) becomes a maximum over  the gametic frequen- 
cies. For constant fitnesses, (20) simplifies to 

s = (max,,J W ,  - minj,l W,J)/min,,j WtJ.  (23) 

An important  immediate consequence of (1 5 )  and 
(22) is that  gene  frequencies  change slowly: 

Weak selection will mean s << c,,,~”. 
Two examples may illuminate the  definition of s. 

Consider  a single diallelic locus  with gene  frequency 
P .  

For the fitness pattern 

W11 = 1 + 2u‘, Wl2 = 1 + u, W22 = 1 ,  (25) 

with u > -1, a  natural choice for I u 1 << 1 would be s 
= I c I. This  agrees with (23),  from which we easily 
deduce 

( 2 2  - u)/(l + u), u < 0, 
0 S u c 9’2, (26) 
u > Y 2 .  

The large value of s in (26)  for u close to - 1 correctly 
reflects the fact that  the  heterozygote is then almost 
lethal. 

For the frequency-dependent fitness pattern 

W I I ( ~ )  = 1 + p + 4 4  - 6 p ) ,  (274 

with 0 C u < 1,  a  natural choice for u << 1 would  be 
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s = u. Straightforward application of (20) leads to 

s = {  3u/(l + a), 0 < u d 54, u/(l - a), ‘/2 < u < 1, (28) 

which is indeed of order u for u << 1.  Note  that s + 
as u 4 1 because 

WIl(1) = Wp(1) = 2(1 - u) + 0 (29) 

as u+ 1. 
Our last  task  in this section is to  derive  a  recursion 

relation for  the linkage disequilibria d;. From (18), 
(24), (1 la),  and (22) we obtain 

Adi = A p ,  + O ( S )  (30) 

= -Dl + O(S) .  (31) 

Successively invoking (1 lb),  (22),  (16),  and  (17), we 
deduce 

Di = C cI( pi -p i ,  pi, ) + O(s) (0 0 (32) 

= cr(di - d, ,  d9 - d;, - d y q j ; )  + ~ ( s ) .  (33) 

I 

(0 0 (0 0 
I 

Substituting  (33)  into  (31) and recalling (7)  produces 
the  recursion  relation 

d l  = YNdi + sJ;(p, t )  + gt (p i ) ,  (344 

where  the  prime signifies generation t + 1; 

YN = 1 - Ctot (34b) 

represents the probability that  there is no recombi- 
nation among  the loci  in N ;  the functionf;(p, t )  satisfies 

If;(p, 0 1  d PI (344 

for some constant pi independent of p, t ,  and s, and 
j(p, t )  is independent of t  if the genotypic fitnesses are 
independent of t ;  and 

Note that 0 < Y~ < 1. Our analysis will be based on 
(15)  and  (34),  rather  than on (1  1). 

The recursion  relation  for  where R C N, can 
be written down directly because it must have the 
form (34), as can be confirmed by observing  from 
(16),  (1 7), and  (1 8) that 

d R )  ‘R = d; ,  4:;) = q, 
‘e ie 

and summing  (34a)  over ip Thus, we have 

in  which Y R  denotes  the probability that  there is no 
recombination in R;  on  account of the  embedding 
R G N ,  the selection function 

still depends on the full vector p of n-locus gametic 
frequencies; and  for suitably defined  recombination 
frequencies in R ,  the recombination  term gl:) has the 
form  (34d). 

We  shall need (*), however, only for two-locus 
subsystems. In this case, since dl:) = 0 for every R and 
ik by (1 7),  therefore  (34d) tells us that g!:) = 0, and 
hence (*) reduces  to 

d i t ) ’  = Y R d i f )  + sfIp(p, t ) ,  (354 

where 

I$Ip(p, t )  I Pl:) (35b) 

for some constant pl:) independent of p, t ,  and s. Now 
(32) gives 

D(R) 1R = Dl = ~ ( ~ ’ d l f ’  + O(s), (36) 
‘Q 

where c ( ~ )  = 1 - Y R  designates the  recombination 
frequency between the two  loci in R. 

REDUCTION OF THE LINKAGE DISEQUILIBRIA 

In this section, we demonstrate  the  rapid  reduction 
of the linkage disequilibria di to O(s). This result is an 
immediate consequence of the following useful 
bound. For every subset of loci R G Nand t = 0, 1,  2, 
. . . , the linkage disequilibria satisfy 

I d!f’(t) I f f t R  AR + p!:)s, ( R )  t 
(37) 

where CY!;) and PI:) denote constants  independent of s 
and t ,  and A R  designates the  complement of the small- 
est two-locus recombination  frequency in R. 

We note in passing that if there is no selection 
(s = 0), then  (37) establishes global convergence of 
the n-locus system to linkage equilibrium at a  rate no 
slower than AIL., where 

Ah: = 1 - C”,j,,. (38) 

Thus,  our proof provides an alternative to  the analyses 
of GEIRINGER (1944), BENNETT (1954), REIERSOL 
(1 962),  and LYUBICH (1  97  1). 

We define CY, = and CY(’? = max,a,, and let t l  

represent  the  shortest  time such that CY(’%$ d s. Then 
(3 7) implies 

di(t) = O(s), t 3 t l  - (In s)/ln AN, (39) 

as s + 0. If cmin << 1, we have the approximation t l  =: 
-c;tn In s, and  then t l  may be considerably longer  than 
the  short  time -In s, which will usually not  exceed  5 
or 10  generations. If the  population is initially in 
linkage equilibrium, i . e . ,  di(0)  = 0 for every i, then 

= 0 for every R and iR, so t l  = 0. There- 
fore, t l  should  be conservative if the population is 
initially  close to linkage equilibrium: I d;(O) I << 1 
for every i. From  (24) we see that  the total gene- 
frequency  change during  the time t l  is very small, of 
order stl - (s In s)/ln AN. 
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Applying (39)  to  (30)  and  (31), we conclude 

Api = O ( S ) ,  t b t l ,  (40) 

Di( t )  = O(S),  t 3 t l .  (41) 

For two loci, (41) was derived in NAGYLAKI (1976); in 
this case, its equivalence to  (39) is obvious from  (36). 

We  shall prove  (37) by induction,  starting with two 
embedded loci and  then generalizing to  an  arbitrary 
number. 

Two loci: Iterating  (35a) leads to 

dj,R'(t) = d!,R'(O)y:, 

1- I 

where the sum is absent  for t = 0. Taking absolute 
values in (42)  and substituting  (35b), we get 

(43) 

For two loci, XR = Y R ,  so (43) establishes (37). 
Multiple  loci: We show  now that if (37) holds for 

every proper subset R C N ,  then it holds for N .  
T o  estimate gi(pJ, note first from  (1 7) that 

lq!:)(t)l d 1, [ d ! t ) ( t ) I  G 1.  (44) 

A glance at (7) to  (1 0) confirms the obvious, that cmin 
< ctOt, whence (34b)  and  (38) yield 

AN = max XR > YN. (45) 
R 

Equations  34d and  44 reveal that 

I gi(pi)  I d C ~ [ 2  I d!: I + I d t )  11. (46) 
I 

Using (37)  for I C N and J C N and  then replacing XI 
and X, by A N  leads to 

I g i ( p i )  I d ai& + his, (474 

where 

ai = 2 ~ ~ ( 2 4  + a?), bi = 2 CI(~P~:  + @?). (47b) 
I I 

Substituting  (34c) and  (47a)  into  (34a), we obtain 

l d / l  d ?Nidi[ + (YiXh + Bis, (48) 

where Bj  = p i  + bi. 
NOW consider & ( t )  such that Si(0) = I di(0) I and 

6; = Y N 8 i  + ai&' + &s. (49) 

If 1 di(t)  I d %(t) for some t ,  then  (48) and (49) inform 
US that I di(t + 1) I d &(t + l) ,  so we conclude by 

induction that 

Idi(t)I d $ ( t )  (50)  

fort  = 0,1, .  . . . 

to  (49): 
We keep in mind (45)  and apply the solution (42) 

1- 1 

& ( t )  = 6,(0)Yfv + y ; y ( a i y r - '  + B,s) 
7-0 

ai hfv Bi s 
d &(O)rfv + 

d aJfv + p is ,  (514 

A N  - YN 1 - YN 
+- 

where 

( Y j  = 6,(0) + , P,=- . (51b) 
ai Bi 

AN - YN 1 - YN 
Therefore,  (50)  and ( 5  la) imply that  (37) holds for 
R = N ,  which completes our inductive proof. 

APPROXIMATION  ON  THE  LINKAGE- 
EQUILIBRIUM  SURFACE 

For t 2 t l ,  according  to (39),  the linkage disequi- 
libria are O(s), which suggests that  the population 
evolves approximately as if it were in linkage equilib- 
rium,  the  difference between the exact gametic fre- 
quencies and those of the  much simpler system on  the 
linkage-equilibrium surface being O(s). To make this 
precise, recall that  the  exact  gene  frequencies p f : ) ( t )  
evolve according to  the complicated law (15), which 
depends on the gametic frequencies p i .  The gene 
frequencies r!:)(t) on the linkage-equilibrium surface 
evolve according  to  the much simpler law obtained by 
imposing linkage equilibrium on (1 5). We choose 

d f ) ( t I )  = pjf)(t1) (52) 

for every k and i k ;  we shall prove  that 

p , ( t )  = rl(t) + O(s), t l  d t 6 K / s ,  (53a) 

as s 4 0, where K designates a  constant and 
n 

7 r i  = n Ti, (53b) ( I )  

k= 1 

denotes  the gametic frequencies  on  the linkage-equi- 
librium surface. 

If r(t) does  not necessarily converge to some equi- 
librium point or if r(t1) is on  the  stable mainfold of an 
unstable equilibrium,  then small perturbations may 
cause large deviations in its ultimate  state.  In this case, 
the  restriction t d K / s  in (53) may be necessary. 

The approximation  (53)  justifies many analyses in 
which linkage equilibrium is posited. We  shall invoke 
(53)  to show that  the  genic covariance between an 
arbitrary  character  and fitness can be approximated 
on the linkage-equilibrium surface,  but shall not use 
it otherwise. 
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For two loci, a  different  proof of (53) was presented 
in NACYLAKI (1977b, pp.  171-173;  1992a, pp. 179- 
18 1). 

Proof of (53): From (1 Sa) and  (39) we obtain 

pi(t) = q t ( t )  + O(S) ,  t 3 t ~ .  (54) 

In view of (24), we may rewrite  (1  5) as 

Apl,k’ = sHl,k’(p, t ) ;  (55) 

because of our assumptions on W+(p,t), the uniformly 
bounded  function Hj:’(p,t) is continuously differenti- 
able with respect to p. We invoke (54)  to  expand  (55) 
by Taylor’s  theorem: 

Ap!:’ = sH$(q, t )  + s2h!:’(q, t ) ,  t 3 t l ,  (56) 

where 

C C Ih!:’(q, t ) l  C M (57) 
k i, 

for some constant M independent of q, t ,  and s. On 
the linkage-equilibrium surface,  (55) becomes 

AT!:) = sH!:’(r, t ) .  (58) 

We put 

x ( t )  = C c Ip!:’(t) - Tl,k’(t)I 1 (59) 
k i, 

subtract  (58)  from (56), sum over k and ik, and take 
absolute values to  derive 

x ( t  + 1) C [ I  p!:’(t) - *$( t )  I 
k i, 

+ s I H!:’(q, t )  - H!:’(r, t )  I (60) 

+ s2 I h!:’(q, t )  I]- 
By Taylor’s  theorem, since H!:’(p,t) is uniformly 
bounded  and continuously differentiable with respect 
to p, there exist constants L$! independent of q, r ,  
and t such that 

I H!:’(q, t )  - H!:’(T, t )  I 
c x L!::) I p!:’(t) - $( t )  I .  (61) 

1 i, 

Inserting  (59),  (61), and  (57)  into  (60) leads to 

x ( t  + 1) e (1 + Ls)x( t )  + Ms2,  t 3 t l ,  (62a) 

x(t1) = 0, (62b) 

L = max L!::’ (63) 

where 

l . i j  k ih 

and  (62b) follows from  (52). 
Now consider y( t )  such that 

y ( t  + 1) = (1 + Ls)y ( t )  + Ms2,  t 3 t l ,  (64a) 

y(t1) = 0. (64b) 

The induction argument between (49)  and  (50)  dem- 
onstrates  that 

x ( t )  c y ( t ) ,  t 3 t l .  (65) 

But (64) yields 

y ( t )  = - [(l + LS)”“ - 13 
M s  
L 

C - (1 + LSy 
M s  
L 

which establishes that 

~ ( t )  = O ( S ) ,  tl C t C K / s .  (67) 

By (65),  the same holds for x( t ) ,  which proves (53). 

SLOW VARIATION O F  THE 
LINKAGE DISEQUILIBRIA 

Here, we posit that  the explicit time  dependence (if 
any) of the genotypic fitnesses is O(s‘): 

WtJ[p(t), t + 13 - w,[p(t), t3 = O(s2) (68) 

as s + 0 for every i, j ,  and t .  The hypothesis (68) will 
enable us to prove  that  after  a time t 2  - 2 t l ,  the 
linkage disequilibria are almost constant,  their rate of 
change being O(s2). We  shall derive this conclusion 
from  the following useful bound. For every subset of 
loci R G N ,  the linkage disequilibria satisfy 

I Adi,“’(t) I s ( K ! : ’ A ~ ~  + pi:’s), t 3 $ 1 ,  (69) 

where K::) and pi:) denote constants  independent of s 
and t. 

The inequality (69)  corresponds  to  (37). In fact, it 
will be clear that  (69) holds with tl replaced by tR  - 
(In s)/ln AR for each R. We have used tl  for simplicity 
and because our interest  centers on R = N and 
tN = t l .  

We define K~ = K ! ~ )  and K ( ~ )  = maxzKz, and let t 2  

represent  the  shortest  time such that K(‘%%-‘~ s. 
Then (69) implies 

Adi = O(s‘), t 3 t2 - t l  + (In s)(ln AN)-’ (70) 

as s + 0. If the population is initially in linkage 
equilibrium, t l  = 0; otherwise, t l  - (In s)/ln AN, SO t 2  - 2tl as s + 0. The time t 2  may be considerably longer 
than  10 or 20 generations if c,in << 1. The total  gene- 
frequency  change during  the period t [  < t < t 2  is very 
small, of order s ( t g  - t l )  - (s Ins)/ln A N ,  which is 
approximately  the same as during  the initial period 
( t  e tl). 

If the gametic frequencies  converge to  an equilib- 
rium  point,  (24)  informs us that  the  characteristic 
convergence  time is t x  - l/s >> t2.  Then most of  the 
gene-frequency  change  occurs during  the period t 2  
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t s t s ,  which, we shall show, is precisely when we 
expect  generic increase of the mean fitness. Of  course, 
(39)  precludes substantial change in the linkage dis- 
equilibria for t > t l .  

Observe  that  (69) and  (70) differ  from (37)  and 
(39), respectively, essentially by a  factor s. This is not 
surprising:  (40) suggests that if explicit time  depen- 
dence is negligible [see (68)],  then  for t 2 t l ,  all 
functions of the gametic  frequencies  should  change at 
the relative rate s, as if they were functions of st rather 
than oft .  

The estimate (70) is the precise and general  state- 
ment of quasi-linkage equilibrium and w i l l  be required 
for  the  proof of the asymptotic fundamental  and 
secondary  theorems of natural selection. KIMURA 
(1 965) was the first to  argue  for two diallelic loci that 
the linkage disequilibria varied slowly and  that this 
was related to  the  fundamental  theorem of natural 
selection. The result (70)  for W D ,  and  the asymptotic 
fundamental  theorem of natural selection were 
proved  for two multiallelic loci  in NACYLAKI (1976). 
Provided  the position effect (if any) is O(s') [see 
(1 35)], D, also satisfies (70) [see below (148)]. 

We  shall prove  (69) by induction,  starting with two 
embedded loci and  then  generalizing  to  an  arbitrary 
number. 

Two loci: Because of (39), we  may set 

dl,  ( R )  ( t )  = sdl,"'(t), t 3 t l ,  (71) 

where dI:'(t) is uniformly bounded as s + 0. Substi- 
tuting  (71)  into  (35a), we obtain 

dl:)' = yRd!:' +fi,"'(P, t ) ,  t 3 t l ,  (72) 

whence 

(ad,, ) - yR~d! ,K '  + ~fl,")(p, t ) ,  t 3 t l .  (73) ' ( R )  I - 

We decompose the change in$ into  parts due to its 
dependence  on  the  gametic  frequencies  and  on time: 

Afi,"'(p, t )  = {fi,"'[p(t + I ) ,  t + I ]  

-f!,"'[p(t), t + 111 (74) 

+ (fl,R'[p(t), t + 11 -fi,"'[p(t), t ] ) .  

By Taylor's  theorem and  (40),  the expression in the 
first brace is O(s). Since the selection term in (35a) is 
sf!:', we infer  from  (68)  that  the expression in the 
second brace is also O(s).  Therefore,  (73) becomes 

(Adi, ) - Y R A ~ ! ~ )  + O ( S ) ,  t 3 t l ,  (75) - (R)  I - 

which has the  form  (35a).  Consequently,  (43) gives 

I Ad,, ( t )  I S I Adj,"'(t,) 1 7gt1 + p! f ' s ,  t 3 t l ,  (76) 

for some constants p!:). Recalling that X R  = y R  for two 
loci, we see that  (71)  and  (76) establish (69). 

Multiple  loci: We demonstrate now that if (69) 
holds for every proper subset R C N, then it holds for 
N. 

From (34a) we obtain 

(Ad,)' = ylvAdi + sAJ;(p, t )  + Agi(pi)* (77) 
Since the  argument based on  (74) applies to any 
number of loci, there exist constants A, such that 

I A$(p, t )  I s A s .  (78) 
To estimate Ag,, first we deduce  from  (34d) 

A g i ( p i ) = c ~ I l [ d ~ : A d i j ) + d y A d i : + ( A d i : ) A d y ]  
I 

+ [di;Aqjf+dyAqi!] + [(Ad!:)A$ (79) 

+ ( A d y ) A q i : ]  + [qyAd!:+qi :Ad?]] .  

For t 3 t l ,  (39),  (17b),  and  (24) inform us that  the 
expressions in the first three brackets are O(s'), and 
(44)  bounds  the expression in the last bracket. There- 
fore, we have 

IAgt(p,)l S C c~[IAd!:'l + IAdy I ]  + ais' (80) 
I 

for t 2 t l  and some constants 0,. Employing (69)  for 
I C N and J C N and  then replacing XI and X, by AN 
leads to 

I A g l ( p , )  I s 1~XfiT'l + v , s2 ,  t 3 t l ,  (ala) 

where 

11 = c cI(Ki:) + K?) ,  
I (8 1 b) 

= ei + c I ( p I : )  + p;j). 
I 

Inserting  (78)  and (8la) into (77), we find 

I Ad,  1 '  S yay I Ad, I + q ~ X ~ ~ ~ 1  + t 3 t l ,  (82) 

where r, = A, + ut.  By virtue of (39), we  may again 
substitute  (7 1) for R = N to obtain 

I A& I I s y N  I adi I + Vi~rfl + ris, t 3 t l ,  (83) 

which  has precisely the  form  (48).  Therefore, (50) 
and (5 1) imply that 

I Ad, ( t )  I S ~,h?l + pis,  t 3 t l ,  (84) 

for suitable constants ~i and pi. In view of (71), this 
establishes (69)  for R = N ,  which completes our proof. 

ANALYSIS OF VARIANCE  AND  COVARIANCE 

In this section, we demonstrate  that  the  orthogonal 
decomposition of the gametic variances in an  arbitrary 
character Z and in fitness W into  their genic (or 
additive  genetic) and epistatic components simultane- 
ously  yields the  corresponding decomposition of the 
gametic covariance of Z and W. The right-hand sides 
of  the asymptotic fundamental  and  secondary  theo- 
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rems of natural selection are generically dominated 
by the genic variance in Wand by the genic covariance 
of Z and W, respectively, and many results of our 
analysis will be required  to  prove  these  theorems. The 
analysis  in this section will involve dynamics only at 
the  end, when we shall invoke (39)  to show that  the 
average excess is close to  the average effect for each 
allele, and  then use (53)  to  demonstrate  that  the 
analysis  of variance and covariance can be approxi- 
mated  on  the linkage-equilibrium surface,  where the 
allelic effects at  different loci are  independent. 

Analysis: Let Zq(p,t) designate  the  trait value of 
genotype ij. We define  the mean values of the  gamete 
i, the allele Ai:), and  the population by 

i  

z = zqpipj. (85c) 
i  .I 

For the deviations from  the mean z, we have 
z ,  = z. .  - 
g g z, @sa) 

zi = zi - z = z . . p .  r j  I ’  (86b) 

Pi*  ( Z i ,  (864 

Thus, z, and zi:’ signify the average excesses for the 
character of the  gamete i and  the allele Ai:), respec- 
tively. 

We decompose the gametic excess zi into  an  additive 
effect [, and  an epistatic deviation ei, 

- 
j 

pi;’r$ = (k) ( I )  - z) z , p l .  
i  

z, = 5; + e i ,  (874 

and  then set 
n 

r i  = c l!:), (87b) 
k- 1 

where ri:) denotes  the  average effect of the allele Ai:’ 
on  the  character Z ,  determined below. Then  the ga- 
metic, genic, and epistatic components of the variance 
in Z are 

Vgam = 2 C P d ,  (884 
i 

Vg = 2 C p i c ? ,  (88b) 
i 

V, = 2 pie: .  ( W  

We eliminate ei from  (88c) with the aid of (87)  and 
minimize V, with respect to {j:). This leads easily to 
[$ EWENS (1979),  pp. 217-2181 

i  

CQ) pie i  = 0 (89) 

for every k and ik. Substituting  (87a)  into  (86c) and 

i 

using (89) yields 
p ! : p  1, = c ( W  PIS; .  , , (90) 

1 

In (go),  there is one equation  for each k and ik. The 
unknown allelic effects {!:) appear only  in the sums li; 
summing  (89)  over i k  and using (86b) and  (86a), we 
infer 

C pi l l  = 0.  (91) 
I 

Let us momentarily translate  the  average effects ac- 
cording  to 

and observe that  the choice 

ck = P I ,  li, ( k )  ( 4  

‘ k  

gives 

C Pik l t k  - . ( k )  ‘ ( k )  - 0 
Ik 

Furthermore,  (91)  and  (87b) reveal that 

ck = 0 ,  
k 

whence J: = fl. Therefore, we  may simply assume 

pjp{::’ = 0 (92) 
Ik 

for each k. 

deduce 
Appealing successively to  (88b),  (87b),  and  (go), we 

V g  = 2 c pili c sf,”’ 
1 k 

= 2 C C ilk C P i l l  
(k) (k) 

k i ,   i  

= 2 pi;’f!:’z::’. (93) 
k i h  

From (88a),  (87a),  (88b),  (88c),  (87b),  and  (89), we 
derive 

V p m  = 2 2 pi(rt2 + e2 + 2Ciei) 
I  

= vg + V, + 4 lj:) piei 

= vg + v,. (94) 

k i ,   i  

Since the  gametes are combined in generalized 
Hardy-Weinberg  proportions, therefore V,,, is the 
additive  component of the total genetic variance V in 
the least-squares decomposition 

v = V p m  + Vprn,dom,  (95) 

where Vgam,dom represents  the variance that arises from 
nonadditivity of the gametic effects. Consequently, Vg 
is indeed the additive  component of V (KIMURA 1965; 
EWENS 1979, pp. 2 17-2 18; NACYLAKI 1992a, p. 182). 
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Since our analysis is entirely within gametes,  domi- 
nance deviations cannot  enter.  Therefore,  the epis- 
tatic  deviation e, and variance V, involve only the 
interaction of additive effects, into which w e  proceed 
to decompose them.The  reader may find some aspects 
of BULMER’S (1980, pp. 46-51) panmictic analysis  of 
the diploid variance helpful. 

Suppose here  that R G N contains at least two loci 
and  put 

where xi:) designates the effect of the  interaction of 
all the loci  in R. The corresponding  components of 
the epistatic variance V, are 

vlp’ = 2 p i ,  [Xi, ] . (97) (R)  ( R )  2 

1, 

Successive minimization of these variance components 
for sets R of n,  n - 1 ,  . . . , 3 loci leads to 

pix!:) = 0 for every k E R. (98) 
l h  

Substituting  (96)  into  (88c) yields 

(99) 

If R # S, then  there exists k E R such that k 4 S, or 
k E S such that k 4 R. Together with (98), (16), and 
(97), this fact reduces  (99) to  orthogonal  form: 

v, = 2 x p l [ x i : ’ ] 2  = viR’. (100) 
R C N  i RGN 

We remark  that (96) and  (98)  enable us to  confirm 
(89): 

in  which the  inner sum vanishes because R contains at 
least two loci. 

We define  the mean deviation e!:) by 

P i ,  Ill 
(R)e (R)  = p ie i ,  (101) 

‘Q 

in which, as always, Q = N - R. Inserting  (96)  into 
(1 01) and using (98)  and  (1 6), we find 

whence 

Thus, e!:) is the sum of the effects of the interactions 

in  all the subsets of R. We can rewrite  (102) as 

X ! R )  = eff - x!:), 
‘R (103) 

SCR 

from which, starting with x!,“) = e!:) for subsets of two 
loci, x!,”’ can be  determined recursively as a linear 
function of  the known deviations e!:) with S C R. 

We turn now to  the analysis of covariance. Corre- 
sponding to  (87), we decompose the gametic fitness 
excess wi into  an  additive effect ti and  an epistatic 
deviation ui, 

WI = t l  + ut, (1  04a) 

and  then set 
11 

t i  = C t::), (1  04b) 
it= 1 

where [I:’ denotes  the  average  effect of A!:) on fitness. 
We define  the  gametic,  genic,  and epistatic covari- 
ances of Z and W as 

Cgam = 2 C p i z i w i t  (1 05a) 
i 

Cg = 2 C p i r i t z ,  (1 05b) 
1 

C, = 2 p i e i u , .  (1 05c) 

Appealing successively to  (105a),  (87a),  (104a),  (87b), 
(1  04b),  (89),  and  the analog of (89) for u;, we find 

I 

Cgam = 2 C p , ( f t &  + e i u 1  + 3;u; + e i b )  
i 

= Cg + C ,  + 2 s!:’ ~ ( ‘ ) p , u i  + t i ,   p i e i  ( 1  
= cg+ c,. (1  06) 

( 9  (1) 

k ik i 1 
T o  justify the  term genic covariance, we express Cg 

purely in terms of  allelic variables. Consecutive use of 
(105b),  (87b),  and  the  analog of (90)  for fitness pro- 
duces 

Cg = 2 C C r i ,  C P i t i  
( k )  ( k )  

k ib i 

= 2 C C p i ,   r i k   w i )  9 
(k) (k) ( 4  (1  07a) 

k i, 

which is the covariance of the  average effect on  the 
character (e:)) and  the average excess for fitness (wii)) 
of every allele that affects the  character.  Observe  the 
loss of symmetry between 2 and W due  to  the decom- 
position of (105b)  into allelic effects. However, apply- 
ing  (104b)  and  (90) to (105b) yields 

Cg = 2 C C P I ,  zzh tik 
k 1, 

(k) ( k )  ( k )  (1  07b) 

as an  alternative to  (107a), which  shows that  the loss 
of symmetry is only apparent. Since, according to  (1  5), 
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it is w!,k) rather  than [j:) that  controls  gene-frequency 
change,  (1 07a) is more  natural  and useful than  (1 07b). 

T o  decompose the epistatic covariance C,, we set 

ut = VI; ' ,  (108) 
RGhT 

where v!:) designates the effect on fitness of the  inter- 
action of  all the loci  in R. We define  the  corresponding 
components of C, as 

cl."' = 2 C p , ,  XI, ut, . ( 1 09) ( R )  ( R )  (R)  

'H 

Substituting  (96) and  (108) into (105c), utilizing (98) 
and its analog for vi:) as in the proof of (loo),  and 
employing (16)  and  (1  09), we deduce 

Next, we prove  that the average excess zi:' and  the 
average effect {r:) differ only because of linkage dis- 
equilibrium. T o  see this, in successive  lines we invoke 
(90)  and  (87b);  (4);  (16)  and  (1 7); (92);  and  (39): 

= pih C;, + O(s), t 3 t l ;  (112) ( 4  ( k )  

the sum in the second line above is over all compo- 
nents of the vector i except z k  and &. For fitness, (1  11) 
holds with z!:) and {i:) replaced by w!,k) and E!:) ,  respec- 
tively, but, on  account of (22),  the approximation 
(1 12) becomes 

p, ,  w,, p , ,  E t h  + O(s'), t 3 t l .  (1 13) ( 4  (k) = (k)  (k) 

Finally, we observe  that  (53) and  Taylor's  theorem 
enable us to  approximate  the variances and covari- 
ances on  the linkage-equilibrium surface. For the var- 
iance components of Z, (88) gives 

V,,,(p, t )  = VPm(r, t )  + O(S), t i  s t K / s ,  (1 14) 

and analogous approximations  for V, and V,. From 
(105) we get 

C,,(p, t )  = CKam(r, t )  + O(s2), t l  s t s K / s ,  (1 15) 

and analogous  formulas  for C, and C,. For the variance 
components of W ,  (88) yields 

V,,,(p, t )  = Vgam(r, t )  + O(s"), t l  t s K / s ,  (1  16) 

and similar expressions for Vg and V,. Of  course,  the 
leading terms in (1 14), (1 15),  and  (1  16)  are O( l ) ,  O(s), 
and O(s2), respectively. 

On  the linkage-equilibrium surface, we have a sim- 
ple expansion of the epistatic variance V ,  in terms of 
the  components VAv, of the total genetic variance V 
associated with  all sets of r additive effects on Z 
(NAGYLAKI 1992b): 

n 

v e ( r ,  t )  = 2 2'"VAr(r, t ) .  (1 17) 
r=2 

This formula generally does  not hold if there is link- 
age disequilibrium. 

EPISTASIS A N D  LINKAGE  DISEQUILIBRIUM 

As stated in the  introduction, if fitnesses are additive 
between loci, the gametic frequencies always converge 
to  a stationary  point in linkage equilibrium (KARLIN 
and  FELDMAN  1970; KARLIN 1978; KUN and LYUBICH 
1979).  Therefore, it ought  to be possible to  relate  the 
linkage disequilibria to  the epistatic deviations in fit- 
ness that maintain them (cf. FELSENSTEIN 1965;  LANG- 
LEY and  CROW  1974;  HASTINCS  1985,  1986;  BARTON 
1986).  This is accomplished here. 

The desired  relations follow from the equation 

Ad, = W"P,U, - D, + O(s'), t 3 t l ,  (1 18) 

as s + 0, where  the linkage disequilibria d i  and D, are 
defined by (1 8) and (1 1 b), respectively, and u, repre- 
sents the epistatic deviation in fitness, defined by 
(1  04). Recalling (1 O ~ C ) ,  from (1 18) we obtain imme- 
diately 

2 e,Ad, = @ - I C e  - 2 e,D, + O(s2), t 2 t l ,  ( 1  19) 
1 

which will provide  a simple proof of the asymptotic 
fundamental and secondary  theorems of natural 
selection. 

For two multiallelic loci, (1  18)  and  (1  19) hold also 
with D, instead of di on the left-hand side (NAGYLAKI 
1976). 

Suppose the explicit time  dependence (if any) of the 
genotypic fitnesses is sufficiently weak to satisfy (68). 
Then (1 18)  and  (70) give 

Di( t )  = I P p i u *  + O(s'), t 3 t2 .  (120) 

Several interesting conclusions follow from this re- 
markably simple relation. If epistasis is weak  in the 
sense that ui = O(s2), as is the case for multiplicative 
fitnesses, then Dt( t )  = O(s') for t 3 t', which is much 
stronger  than  (41).  This result was proved for two 
multiallelic loci in NACYLAKI  (1977a). If, on the con- 
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trary, uI is comparable to s in magnitude,  then Di(t)  E 

V-' piui for t 3 t2. Thus, in this case, Di has the same 
sign and  order of magnitude as the epistatic deviation 
in fitness. 

From ( 1  19) and (70) we obtain 

C,  = 2 V  eiD, + 0 ( s 2 ) ,  t 3 t 2 ;  (121) 
I 

for  the epistatic variance in fitness, ( 1  2 1 )  becomes 

v, = 2m UiDi + O(s", t 3 t'. (122) 
I 

According  to (108), u, is the sum of the effects of 
the fitness interactions in  all subsets of  loci. T o  illus- 
trate this point, we  define  for the subset R of at least 
two loci the linkage disequilibria D:,"' and mean 
epistatic deviations u!,"' by 

Di,"' = Di,  (123) 
iQ 

 pi:'^!,"' = c piut, ( 1  24) 
iQ 

where 4 denotes  the  complement of R. Then (120) 
yields 

D!,"'(t) = w-'p!,"'u!,"' + O(s'), t 3 t2 .  (125) 

Recalling (96), ( 1  02), and ( 1  OS), we get 

Thus,  for each subset R,  the linkage disequilibrium 
D!,"' is proportional  to  the sum of the effects of the 
fitness interactions in  all subsets of R. The interactions 
in  all subsets S G R  contribute  to 0:;' because, accord- 
ing to (1 23), all the linkage disequilibria Dfg' are "con- 
tained" in 0:;'. 

T o  decompose (125) so that only vi,"' appears on 
the  right-hand  side, we generalize SLATKIN'S (1972) 
linkage disequilibria to multiple alleles. We define  for 
gametes  the allelic indicator  random variables xi:' by 

= 1 if Ai:' is the allele at locus k, 
0 otherwise, ( 1  27) 

and write g f o r  the expectation  over  the gametic 
frequencies pi .  Our new linkage disequilibria are  the 
moments 

Observe  that 

x!,"' = 1 (129) 
'A 

for every K ,  which demonstrates immediately that 

A:,"' = 0 ( 1  30) 
4 

for every K E R, in contrast to (123). The work of 
HASTINGS (1986) and BARTON (1986) suggests that 
A:,"' might depend only on VI,"' for weak selection. 

Before  presenting our result, we must describe  re- 
combination in the subset R. We define  the set of sets 

N(KR)=(M: KGMCNandR-KGN-M! (131) 

for K C R. We extend our definition of the recombi- 
nation frequencies cI in the biologically natural man- 
ner ( 1  € I C  N): 

CN-1 = c/. (132) 

Then the probability of reassociation of the genes at 
the loci in K, inherited  from  one  parent, with the 
genes at  the loci  in R - K, inherited  from  the  other, 
is 

c p  = c C M .  (133) 
MG'V.IP' 

These  are, of course, marginal probabilities. If T I  is 
the smallest element of R, we can write the total 
probability of recombination  among the loci  in R as 

p )  = 
1 0 1  

$1 = - C P ' .  ( 1  34) 
K : r , E K C R  2 K C R  

Observe  that (131), ( 1  33), and (134) generalize (8), 
(9), and (7), respectively; the  notation here takes ad- 
vantage of ( 1  32). 

We assume that  the position effect (if any) is O(s2): 

w. - w. 
'J I / J J ~ J / I J  = O(") (1 35) 

for every i, j ,  and I ,  where J = N - I .  We  shall establish 
that 

Aj,"'(t) = (Ct(,tw) p, ,  ut, + O(J'), t 3 t z ,  (136) 

for every subset R C N. This surprisingly simple result 
seems to be quite difficult to prove,  but our proof is 
highly informative: we shall express A::' and D!,"' in 
terms of d!:' for S C R [see (142) and ( 1  48)] and  then 
A!,"' in terms of [see (149)]. Note  that the form of 
(136) differs  from  that of (125) only by the factor 
c::!. Such a  difference was to be expected because 
( 1   1  b) shows that the explicit dependence of 0::' on 
the  recombination  frequencies is linear, whereas the 
definition ( 1  28) of Ai,"' is independent of them. 

From 134 we infer  that if u!:' = O(s') for some R, 
then A!," \ )  ( t )  = O(s') for t 3 t ~ .  For multiplicative 
fitnesses, both  the assumption and conclusion hold for 
every R. If, on the  contrary, vi:) is comparable to s in 
magnitude,  then  the error  term in (136) may be 
neglected,  and  therefore A!,") has the same sign and 
order of magnitude as vjf'. 

Proof of (1 18): In successive lines, we appeal to 
(18a); ( 1  la), (18b), and (24);  (104), (18a), and (15); 

iR) - -1 ( R )   ( R )  
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(22)  and  (39);  and (1 13): Inserting (1 Sa), (39),  and  (1 7b)  into (1 43b) leads to 

= m“piui - Di + m - l p ,  [!f) 
k 

- I@”( p, - di) w::’ + O(s2) 
k 

= m ” p i u i - D i + m - ’ p , ~ ( ~ ~ f ’ - w l f ’ ) + o ( s 2 )  

= v-lpiui - De + O(s2), (1 37) 

k 

where the last two lines hold for t >, t l .  
Proof of (136): The proof falls naturally into several 

sections. 
First, we derive  from (1 28)  an explicit formula  for 

A!:). We define the gametic  indicator  random vari- 
ables 

- W.. . . (  . . d .  + q . . d . . ) ]  
W ~ J P J  JPJ Sl’J ‘IJJ 

+ O(s2), t 2 t l .  (144) 

We impose (135)  and use (21  b)  to simplify (44)  to 

d;) = 9 d ~  + qJdt - qtdJdjpJ - qjr/dt,jJ O(S2), t 3 ( 1  45) 

and substitute this into  (143a)  and invoke (16)  and 
(1 7) to  deduce 

D,(t)  = c,(d, - qj:’dy’ - qTd!: ) )  + O(S‘)), t 2 t l .  (146) 
I 

With the aid of (7)  and (1 32), we immediately reduce 
(146)  to 

Di( t )  = c,,,di - csqiT)d$f) + 0 ( s 2 ) ,  t 3 t l ,  (147) 
SCN 

- J 1 if ZK is the  gamete in K ,  
- 10 otherwise. (139) 

Setting L = R - K and  denoting  the  number of 
elements of L by 1 = IL I, from  (128),  (139),  and (17) 
we find 

where 

For fixed 1 and 1 R (  = r, the set L can be chosen in 
( 9 ,  ways, so 

in  which L = R - K .  Indeed,  one can verify ( 1  48) by 
utilizing (1  23),  (7),  (1  33),  and  (1  34) in (1 47). 

We note in passing that (148), (17b),  (24),  (39),  and 
(70) imply that 0::’ satisfies (70)  for every R C N .  

Since we know D:,“’ from (1 25), our third task is to 
express A!:’ in terms of D f )  for S C R. For 2, 3,  and 
4  embedded loci, (1 48) was solved for dl:’ in terms of 
Dl,”), and  the result was substituted  into (1 42). These 
increasingly tedious calculations suggest the surpris- 
ingly simple formula 

C,~,A;,  ( R )   ( R )  ( t )  = (-1)’q:b)D:f) + O(s2), t 2 t l .  (149) uR = (L) (-1)‘ = (1 - 1)‘= 0, (141) KGR 
1 =o 

and  therefore 

A::’ = c (-1)qIL 1 (L)d!K) IK . (142) 
KGR 

As a  check, one can show that  (142) satisfies (130). 
We note  parenthetically  that (142),  (17b),  (24),  (39), 
and  (70) imply that A!,“’ satisfies (70)  for every R N .  

Second, we approximate DI:’ for weak selection. 
We rewrite (1 1  b) as 

Di = c c CJ!, f 

(1) (1 43a) 
1 1  

where  1 € I C N and 

Y!f) Y = m”(W Y p f  ’ J  - WiljJ,j,,JpillJpj,~). (143b) 

To simplify the  notation, we shall prove  (149)  for 
R = N ;  on account of the  invariant  form of our 
equations, this is clearly sufficient. Thus, we must 
demonstrate  that 

ct,,A,(t) (-l)‘q!;)Df’ + 0 ( s 2 ) ,  t 3 t l ,  (150) 
SEN 

in  which T = N - S and 7 = 1 T 1 .  Inserting  (1  48)  into 
the  right-hand side of (1 50) suggests the definition 

where now L = S - K .  We  shall establish (150) by 
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proving  the  identity 

F, = cto,A,, (152) 

where A, is given by (1 42). 
We segregate  the  term S = N in the single sum in 

(151), set M = N - K ,  observe  that q$:)qlf) = q!:), and 
interchange  the  summations in the  double sum: 

F, = c,,,d, + (-l)T&:iq$T)di:) 
SC,V (1 53) 

We put K = 1 K I and u = IS I and interchange  the 
names of the sets K and S in the  double  sum.  Then 
(- 1)' becomes 

(-I)"-" = (-1)"(-1)u-K = (-1)'(-1)" 

where we have retained  the  definition 7 = n - u. 
Thus, we transform (1 53) to 

in  which 

Vs = &i + $s, (1 54b) 

$s = - 2 (- 1)"p,  (1  54c) 
K : S C K C N  

and T = N - S, as  above. 

and  interchanging  summations yields 
Substituting (133)  into  (154c), appealing to  (131), 

where 

bssM = K : S C K D ,  
K-SCN-M 

(-1)" (1 55b) 

Given K ,  we can choose L = K - S G N - M in (";") 
ways, where m = IM I. Furthermore,  the restrictions 
S C K and M C N imply respectively that 1 > 0 and 
m < n. Consequently, we have 

= -1, 
so (1 55a)  reduces to 

which is the total probability of recombination  events 
in N such that  the loci  in S do not  recombine. There- 
fore, it is evident  from (1 54b)  that Vs = ctot, and this 
can be proved by manipulation of (1 33) and ( 1  34). 
Returning  to (1 54a), we see that 

Fi = Ctot 2 (-l)'qiT ( T )  dis (S) ; (158) 
S D  

a glance at  (1  42)  informs us that  (1 58) is identical to 
(1  52). 

We are finally ready to prove (1 36).  Note first that 
(1 7a) and  (39)  enable us to  rewrite (1 25) as 

Di,"'(t) = fl"q~f)u~f) + O(s2), t 3 t2 .  (1 59) 

Substituting  (1  59)  into  (1  49) leads to 

ctotWAi, ( R )  - ( R )  ( t )  = qiR ( R )  G i ,  ( R )  + O(s2), t 3 t 2 ,  (160a) 

where 

GI, ( R )  = (-l)$Q, (1 60b) 
K C R  

in  which L = R - K and 1 = ( L J .  

summations: 
We substitute (126)  into  (160b)  and  interchange 

(161a) 

where 

Setting u = IS I < r and  noting  that,  for fixed K ,  we 
can choose K in (i z )  = ( r  1 z )  ways,  we find 

We conclude  from  (161a)  that GI,") = vif', whence 
(1  60a) yields 

and  (1 7a) and  (39)  demonstrate  that (1 63) is equiva- 
lent to (1 36). 

THE ASYMPTOTIC  FUNDAMENTAL AND 
SECONDARY  THEOREMS OF NATURAL 

SELECTION 

The results of the previous sections enable us to 
prove  the asymptotic fundamental and secondary 
theorems of natural selection. We  shall derive  the 
former as a special  case  of the  latter.  Although (1 76) 
below, together with (1 I ) ,  gives the  rate of change AZ 
exactly, this formula is unilluminating because of its 
complexity. The secondary  theorem follows from the 
instructive approximation 

AZ = m"Cg + + 2 eiAd, + O(s'), t 2 t l ,  (164a) 

as s + 0, where  the genic covariance C, is given by 
(107), 

'rl 
(1 64b) 
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signifies the mean of the  changes in trait genotypic 
values over  the  next  generation, and e, denotes  the 
epistatic deviation in (87). 

The result (164)  depends only on  the weakness  of 
selection; there  are no  restrictions  on  frequency or 
time dependence. 

Note  that the sum in (1 64a) is absent if either  the 
character is determined without epistasis (e ,  = 0 for 
every i) or  the linkage disequilibria are constant 
(Adi = 0 for every i). In  the first case, (164)  agrees 
with the exact formula in NACYLAKI (1989). The 
second case occurs if fitnesses are multiplicative and 
the  population is initially  in linkage equilibrium, be- 
cause multiplicative fitnesses preserve linkage equilib- 
rium, i.e., if di(0) = 0 for every i, then d,(t)  = 0 for 
every i and t (MORAN 1967; KARLIN 1975; NAGYLAKI 
1992a, Problems 8.2 and  8.10). 

According to (1 15), we can approximate  the genic 
covariance on the linkage-equilibrium surface: 

C,(p, t )  = Cg(:g(a, t )  + O(s2), t l  < t c K / s .  (165) 

Thus, we could replace C,(p, t )  in (1 64a) by its linkage- 
equilibrium approximation Cg(:g(a, t )  without changing 
the  order of the  error. 

If the explicit time dependence of the fitnesses (if 
any) is sufficiently weak to satisfy (68), then  (70) holds, 
and hence (1 64a) reduces to 

A Z  = W"C, + E + O(s2), t 3 t2. (166) 

If, in addition,  the genotypic values Z, vary sufficiently 
slowly to satisfy 

AZ,j = O(S') (167) 

for every i and j, we obtain the asymptotic secondary 
theorem of natural selection: 

A Z  = W"Cg + O(S'), t 3 ty, (168) 

as s + 0. The weaker assumption AZg = o(s) (i.e., of 
an  order smaller than s) leads to  (168) with the error 
~ ( s )  instead of O(s2). The absolute error in (168) is 
small, though  the relative error may be large. 

Whereas  for  quantitative genetics our interest  cen- 
ters on the evolution of z, it is the evolution of  the 
mean fitness that illuminates multilocus dynamics 
by providing an  intuitive,  geometrical  representation 
and an analytic tool.  Letting Z = W in (164)  and 
reexamining  the error terms in the  proof  of (1 64), we 
find 

A m  = m"VK + E + 2 uiAd, + 0(s3), t 2 t , ,  (169a) 

as s + 0, where  (93) gives the genic variance in fitness 
as 

- 
AW = C (AWJplpj  (1 69c) 

represents  the mean of the  changes in the genotypic 
fitnesses over  the  next  generation, and u, designates 
the epistatic deviation in (1 04). 

The paragraph below (1 64) applies with the single 
obvious change  that u, = 0 for every i if fitnesses are 
additive between loci. 

By (1 16), we can approximate  the genic variance in 
fitness on the linkage-equilibrium surface: 

'.I 

V,(p, t )  = Vg(a, t )  + O(s3), tl S t S K/s .  (170) 

Therefore, we could replace Vg(p, t )  in (169a) by its 
linkage-equilibrium approximation Vg(:g(a, t )  without 
changing  the order of the  error. 

Under  the assumption (68) of  weak explicit time 
dependence,  (70) holds, and consequently (169a) sim- 
plifies to 

A m  = W"V, + + O(S") ,  t 3 ty. (1 7 1) 

Under  the  further assumption that  the genotypic fit- 
nesses  vary sufficiently slowly to satisfy 

AW, = O(s3) (1 72) 

for every i andj ,  we obtain the asymptotic fundamen- 
tal theorem of natural selection: 

AW = W"V, + O(s3), t 3 t2. (173) 

In  particular,  (173) holds for  constant genotypic fit- 
nesses. The weaker assumption AWV = o(s2) leads to 
(173) with o(s2) instead of O(s3). 

The results (169) (with Di instead of di)  to  (173) 
were established for two multiallelic loci in NACYLAKI 
(1976, 1977b. Sec. 8.2; 1992a, Sec. 8.2). 

Thus,  after  the  short time t2 defined in (70),  the 
absolute error in (173) is only 0(s3).  Since V, = O(s2), 
we expect generically 

which  would  imply increase of the mean fitness. How- 
ever, (1 74) can fail if the relative error in (1 73) is not 
small, which can occur if V,(p, t )  << s2. But (1  69b)  and 
(1 5 )  yield 

V,(:g(a, t )  = 2[W(x,  t)I2 k i, (Arj,k))*/~!,k) (175) 

on the linkage-equilibrium surface, which  shows that 
Vg(x,  t )  << s2 if and only if I  AT!,^)] << s for every k and 
ih. From (53)  and I1 70) we conclude  that Vg(p, t )  << s2 
if and only if I Apj,' I << s for every k and ih. Such slow 
gene-frequency change can result  from symmetry con- 
ditions or proximity to  an  equilibrium (MORAN 1964; 
KIMURA 1965; NACYLAKI 1977a). 

If the fitnesses are constant and  the gametic fre- 
quencies converge to  an  equilibrium  point, the total 
changes in W during  the various evolutionary epochs 
are given by the estimates in NACYLAKI (1 977a). 
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We  shall present two short  proofs of (164). The 
first leads directly to  the genic covariance C,. If the 
population is initially in linkage equilibrium,  however, 
the response to  the first  generation  of selection in- 
volves the gametic variance C,, (NAGYLAKI 1992b). 
The second proof is based on  (1  19)  and  demonstrates 
that,  to  the leading order in s, the contributions of 
the epistatic variance and  the effect of linkage dise- 
quilibrium add up to  the sum in (164a).  This  proof 
generalizes the  one  for two multiallelic loci (NAGYLAKI 
1976,  1977b, Sec. 8.2; 1992a, Sec. 8.2). 

First proof of (164): From  (85c),  (86a),  and  (86b) 
we easily find 

= + 2 z,Api + z,(Ap,)Ap,, (176) 

where E is given by (164b). By (40), for t 3 t l  the 
second sum is O(s2). To calculate the first sum, in 
successive lines we use (87), (1 8a);  (4), (1 8b),  and  (24); 
(1  5) and (1 8a);  and  (99a),  (89),  (22),  and  (39): 

i ' J  

2 ZiApi = 2 (T Si:' + e,)  Apl 
i i 

= 2 C {l:' Api + 2 e;(Adi + Aq,) 

= 2 {::'A$!:' + 2 e,Adi 

k ih i i 

k ik i 

+2Ce iC(q i /p l~ ' )Ap! : '+O(s2 )  
i k  

= 2 W" Cpi, {ih w : ~  + 2 eiAdi ( k )   ( k )  (I) 

k ih  i 

+ 2 W " ~ ~ w i : ' ~ ( ~ ) ( p i - d i ) e ~ + o ( s ~ )  
k ih i 

= ~ " C g + 2 C e ; A d i + O ( s 2 ) ,  tatl. (177) 

Second proof of (164): We proceed as in the above 
proof,  but  evaluate  the first sum in (176)  differently. 
In successive lines, we employ (1  la);  (1  05a)  and  (87); 
(106) ;and( l l9)and( l l2) :  

: 

2 z~AP, = 2 z;(W-'~~ZU; - Dl) 
i i 

DISCUSSION 

Here, we reference  and summarize our main results 
and discuss some open  problems. In the  abstract, we 

outlined the evolution of the multilocus system under 
weak selection. At the beginning of each section, we 
presented and discussed our major results in detail 
before  proving  them in the following subsections. Our 
results hold if s << c,,in, where s and c,in denote  the 
selection intensity,  defined by (20),  and  the smallest 
two-locus recombination  frequency, respectively. 
The numerical studies of LEWONTIN (1964a,b)  and 
FRANKLIN and LEWONTIN (1970) do not satisfy this 
condition. 

The bound  (37)  and  the estimate  (39)  describe  the 
rapid  reduction of the linkage disequilibria di, defined 
by (18),  to O ( s )  in an evolutionarily short  time t l  - 
(In s)/ln( 1 - c,,,~,,). According to (4 I ) ,  the estimate  (39) 
holds also for  the linkage disequilibria D,, defined by 
(1 lb).  The linkage disequilibria A:,"' are defined by 
(1 28)  for all subsets of  loci R ,  and  the explicit formula 
(1  42) shows that  they,  too, satisfy (39). The shortness 
of the  time t ,  implies that whenever s << c,,,, linkage 
disequilibria in natural populations should almost al- 
ways be small. This conclusion agrees with observation 
(HEDRICK 1983, pp.  386-393; KIMURA 1983, pp. 

Equation 53 demonstrates  that  after  the time t l ,  the 
population evolves approximately as if it were in link- 
age  equilibrium,  the error in the gametic frequencies 
being O(s ) .  

Suppose now that  the explicit time dependence (if 
any) of the genotypic fitnesses is O ( s 2 ) ,  as specified by 
(68). Then the  single-generation  change Ad!,"' in the 
linkage disequilibrium dl,") satisfies the  bound  (69)  for 
every subset R ,  and this yields the  estimate  (70): 
Ad, = O ( s 2 )  for t 2 t 2  - 2tl. As noted below (142),  the 
linkage disequilibria Al,"'also satisfy (70). As remarked 
below (148),  provided  the position effect (if any) is 
O(s2)  [see (1 35)],  the  estimate  (70) applies as well to 
the linkage disequilibria D!,"'. Thus, all three sets of 
linkage disequilibria are nearly constant after  the ev- 
olutionarily short  time t 2 .  

The gametic variance in an  arbitrary  character 2 
and  the gametic covariance between 2 and  the fitness 
W were decomposed orthogonally  into  their  additive 
and epistatic components, and  the total epistatic vari- 
ance and covariance, which involve only additive in- 
teractions, were further decomposed orthogonally 
into  the  contributions of  all the subsets of loci. As 
indicated in (1  12)  to  (1  16),  for t 3 t l  these analyses 
can be  approximated on the linkage-equilibrium 
surface. 

According  to (15), gene-frequency  change is con- 
trolled by the  average allelic excesses @. Equations 
118,  123,  124,  and  126 yield 

284-285; NEI 1987, pp. 171-175). 

Ad:,"' = W"p~,"'u~,"' - 0:;' + O(s2) ,  t 3 t , ,  (179) 

which reveals that  for t 3 t l ,  the evolution of the 
linkage disequilibria di t '  is governed primarily by 
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ui,"', the sum of the effects ur,") of the gametic additive 
fitness interactions in  all subsets S C R G N of  loci. 
Thus, dominance deviations and  their  interactions do 
not affect the dynamics, and  a diploid analysis  of 
variance is unnecessary. 

For t 3 t y ,  (125)  relates the linkage disequilibria 
DI,") to  the epistatic deviations u!,"'. If the position 
effect is O(s2) ,  then DI;) and Ai,"' are given by (148) 
and (1 49), respectively, and  (1 36) relates the linkage 
disequilibria AIR to vi:', the effect of the gametic 
additive fitness interaction of  all the loci in R. There- 
fore, whenever the gametic frequencies and  the link- 
age map are known, (136) can be used to  bound or 
even estimate the epistatic deviations in fitness. Since 
the time t2 is usually short, such a  bound or estimate 
does  not  depend  on any assumption of stationarity. 

Our most general  approxinlations  for  the  rates of 
change Azand A m  of the means of Zand  ware (164) 
and  (169), respectively. Under  the mild restriction 
(68) on the explicit time  dependence of the genotypic 
fitnesses W,, these approximations simplify to (1 66) 
and (1 7 1), respectively. If, in addition,  the genotypic 
trait values 2, vary sufficiently slowly to satisfy (1 67), 
we obtain the asymptotic secondary  theorem of natu- 
ral selection in the simple form (168). For the mean 
fitness, the  corresponding assumption (1 72) leads to 
the precise statement (1 73) of the asymptotic funda- 
mental theorem of natural selection. 

( R )  

Next, we turn to some open problems. 
The conditions under which (1 74) fails because the 

relative error in (173) is large are still insufficiently 
characterized even for two loci. 

In this paper, we fixed the  number of  loci (n), and 
consequently did  not  determine  the  dependence  of 
our bounds and estimates on n. This observation leads 
to several difficult questions  that are particularly im- 
portant in quantitative genetics, where we often wish 
to study the limit n + m. Taking this limit  in our 
results requires uniformity in n. With the  extremely 
conservative definition  (20) of the selection intensity 
s, uniformity seems plausible, but it may be very hard 
to  prove. Furthermore, it may sometimes be unlikely 
that s remains small when n is very large, as exempli- 
fied  by a phenotypic fitness function  that is very  small 
for  extreme  phenotypes. 

These possible limitations would be  removed if the 
condition s << c,in could be weakened to s*  << Cmin, 

where s*  designates  the largest single-locus selection 
coefficient. To define  the  constant s*  precisely, 
we replace the genotypic fitnesses W..( t )  in 
(20a) by the single-locus marginal fitnesses wzYk(p, t )  
and set 

'I " ( k )  

s *  = sup rk(P7 t ) .  ( 1  80b) 
k,p.f 

TURELLI and BARTON (1 990) investigated weak  se- 
lection on a  character  determined purely additively 
by many  loci. The above considerations would be 
essential for a rigorous  derivation and generalization 
of their results from our  approach. 

I thank  WARREN  EWENS  for helpful comments  on  the manuscript 
and MITZI NAKATSUKA for typing it conscientiously and beautifully. 
This work was supported by National  Science Foundation  grant 
BSR-9006285. 
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